

Refrigeration Reliability, Efficiency and Emissions Reduction

Graeme Maidment

Content

- Why refrigeration systems leak, and its impact
- What is REAL ZERO and how it can help.....
 - -Site investigations
 - -Tools we have developed
 - -Training material and specialist skills

Why systems leak?

• A pressure difference

 A hole, gap or imperfection in the system

- 1. Most systems operate above atmospheric pressure
- 2. The main reasons for leakage
 - poor brazing
 - Poor vibration elimination
 - Insufficient support
 - Use of mechanical joints
 - Wrong pipe thickness

- 3. Leaks are not identified because.....
 - Inadequate pressure testing in commissioning
 - Poor service and maintenance
 - Poor access making service difficult

Impact of leakage

Leakage may result in

- 1. Reduction in reliability,
- 2. Down -time
- 3. Reduced efficiency
- 4. Increased environmental impacts
- 5. Increases in costs

realizero Impact of leakage - reliability

Grace et al, 2005

realzero Impact of leakage – environment

- Refrigeration produces
 10% of total radiative force (IIR, 1992)
 - 20% direct; 80% indirect (IIR, 2007)
- How will this change after R22 phase out?

Annual EU Emission (MTCO2e) for HFC Systems

System type	Direct emissions MTCO ₂ e		Indirect emissions MTCO ₂ e	Total global warming impact MTCO ₂ e	Direct % related to total emissions
Retail	9.0		23.0	32.0	28%
Industrial	3.4		25.0	28.4	12%
DX AC	2.6		10.0	12.6	21%
Small commercial	1.8		12.0	13.8	13%
Chillers	0.7		12.0	12.7	6%
Other small hermetic	0.3		12.0	12.3	2.5%

Source HEAP, R.D. 2001-5

Charge level also influences CoP

realzero Impact of leakage – revenue cost

Leakage results in cost due to

- 1. Refrigerant cost
- 2. Service engineer cost
- 3. Down-time cost
- 4. Increased energy cost

And in the future.....

5. Carbon cost... £15/tonne of CO2, 1kg R404a costs £55

What is REAL ZERO and how it can help.....

- IoR initiative funded by the Carbon Trust et al.
- Objective based upon 30 case studies to develop
 - -Best practice guidance
 - Tools to keep track of and value the carbon case for refrigerant management
 Training and specialist skills
- Today's presentation introduces this

The Site Survey

Site Surveys

30 surveys – range of systems:

- Retail, industrial, leisure
 Consistent survey format
- Log system and operating conditions
- Visual check of system
- Leak test easily accessible joints only
- Check F Gas log

Leak points as expected:

- uncapped valves / stems
- flanges, flares
- Schraders
- rotolock flanges

Survey Key Findings

F Gas reporting poor

- Logs not on site
- Available logs questionable
- System charges not available so % leak rate not possible to estimate

Both leak detectors worked well

- Infra red
- Heated diode

Common Leak Points

Make sure gland is tightened Fit caps and seals

Remove core when brazing ensure cool before replacing **Tighten core** correctly Ensure cap has good seal

Use flare solder adaptors

Or eccentric flaring tool Lubricate Tighten to correct torque

Replace gaskets Tighten flanges evenly Use correct torque

Check and change seals if necessary (especially during retrofit) Use oil on seals

Use correct size Use only for initial access to system, then fit Schrader Leak test line taps found on system replace if possible

some tools to help

realizero) The F-Gas Logging tool

FGas Support Guidance - Index

- RAC1 Overview RAC2 Usage
- RAC3 Key Obligations
- RAC4 Getting Started
- Qualifications & Certificates RAC5
- Practical Guidance RAC6

Welcome to the REAL Zero Leak Reduction & FGas Guidance page. You will find a number of useful links and guides produced by the REAL Zero project!

Useful Web Links

Institute of Refrigeration www.ior.ora.uk www.realzero.ord.uk Defra (FGas Support) www.defra.dov.uk/fdas The Carbon Trust www.carbontrust.co.uk www.acrib.ord.uk www.bsi-global.com

Real Zero

ACRIB

BSI

Refrigerant GWP's								
R404A	3780							
R407C	1650							
R408A	3020							
R409A	1540							
R410A	1980							
R134a	1300							
R22	1700							
R403A	3000							
R403B	4310							
R422D	2620							

Real Zero Guides - Index

- GN 1 Guide to Good Leak Testing
- GN 2 Illustrated Guide to 13 Leak Points
- GN 3 Designing Out Leaks
- GN 4 Leakage Matter - For Service & maintenance Contractors
- GN 5 Leakage Matters - For Equipment Owners

Microsoft Excel - FGas Log Ver 2.50.xls								
Elle Edit View Insert Format Iools Data Window Help								
🗄 🗋 🚰 📮 💪 🖂 🔍 Ι 🖏 🐁 🖓 🛍 🔹 🛷 I 🥙 + 🔍 + I 🧶 Σ + ½↓ ζ↓ I 🏨 🐼 @	• 11 • B I U = = =							
📴 🖄 🖄 🕼 🏷 🏷 🛛 🦉 😼 🖓 🖓 🖓								
011 • &								

General Information			
Plant Name: INstREF		Reference No. 222	
Location of Plant: Carshalton			
Franc Operator (name, address, t	elephone). Mintalin Rodway, instren		
Operator Contact: Miriam Rodwa	у		
Cooling Loads Served:			
Refrigerant Type:	Refrigerant Quantity (Entrained	Volume) kg: 500.00	
Plant Manufacturer:	Year of Installation:		

Refrigerant Additions								
Date	Technician/Company	Amount Added (kg)	Reason for Addition					
20/09/2007	YYYY Ltd	20.00	schrader leak					
15/06/2008	xxxx Ltd	15.73	vibration problem					
16/010/2008	AAAA Ltd	122.00	fractured pipe					

Start

- A tool for the rapid calculation of the equivalent CO₂ emissions resulting from the direct release of refrigerants into the environment.
- The tool also calculates the cost implications of refrigerant leakage, including:
 - cost of refrigerant
 - cost of repair

- Refrigeration engineers to transfer information related to RAC systems and refrigerant leakage back to end users.
- End users to evaluate the performance of their systems and to determine CO₂ emissions and costs from refrigerant leakage.

How does it work?

Introduction-

This software tool calculates the direct CO₂ emissions equivalent to the quantity of refrigerant leaked from air conditioning or refrigeration systems.

The user enters details of refrigerant additions/top-ups over a period of time, including the date of each addition; the net quantity of refrigerant added (i.e. total quantity added less the quantity recovered); and the type of addition (i.e. select from one of the following options: (i) routine maintenance top-up; (ii) emergency repair top-up; or (iii) recharge following catastrophic repair).

Direct costs include replacement refrigerant, engineer call-out charges and any repair materials. Indirect costs are consequential costs of equipment downtime. The user can either accept the default values offered or enter alternative figures.

The rate of refrigerant loss is then calculated, together with the equivalent CO₂ emissions associated with the leakage. The cost of replacing the leaked refrigerant and total costs associated with the refrigerant loss are reported.

The results sheet summarises both the main inputs provided by the user and the financial costs and $\rm CO_2$ emissions resulting from the leakage.

Under the F-Gas Regulations (2006), you are obliged by law to keep a record of all refrigerant additions to your system. You should therefore hold sufficient information to provide the brief details of refrigerant additions requested on the following screens.

Exit

Next

ealzero w.realzero.org.uk	Carbon Emissions Calculator For Refrigerants Institute of Refrigeration (IOR) Real Zero Project
	System Details
t	Site name: graeme
0	System name: gg
G	Select refrigerant: R409A Confirm Corresponding GWP 1540
d e	Indicative estimated price, as at 2008 (£ per kg): 23 Either enter actual cost, if known, use default indicative value or leave blank.
t	Enter number of refrigerant additions for which data is available (up to 6) and then input details of these additions as indicated on the following screens.
а	
i	
l S	Exit Restart Return to Previous.Screen

Refrigerant Additions

realzero

Enter details of additions in chronological order, starting with the earliest addition and continuing with successive additions, up to the most recent.

N.B. Net quantity refrigerant added = (total refrigerant added - refrigerant recovered)

Addition Number 1	Date of Earliest Addition (dd/mm/yy): 25/07/07	Net Quantity of Refrigerant Added (kg): 20	Reason for Additic Routine maintenance top-u	n: p 💌	Summar	y of additi	ons Refrigerant	Reason for
Detail	s of Routine Sei	rvice Top-Up —	Confirm]	1	25/07/07	20	Routine
	Cost of Routin (£ per top-u	ne Maintenance Ip): 250	Top-up Click Next to co	ntinue.				
De	fault value zero (s naintenance contra	ince service cost: act.) However ple require	s are assumed to be cover ase enter a cost value abo ed.	ed by a we, if	Click on a deta	any Additior ils or to ma	n Row in Tabl ke any chang	e to see es.
E	xit	Restart	Return to Previous Screen	Next				

Refrigerant Emissions And Leakage ZERO

rea

ero

realzero

Refrigerant Additions

Enter details of additions in chronological order, starting with the earliest addition and continuing with successive additions, up to the most recent.

N.B. Net quantity refrigerant added = (total refrigerant added - refrigerant recovered)

Date of Most Net Quantity of Addition Recent Addition Refrigerant Number (dd/mm/yy): Added (kg): Reason for Addition: 2 30/08/08 48 Emergency repair top-up	_ Summai	ry of addit	ions ———	
	Addition	Date of Addition	Refrigerant	Reason for
Confirm	1	25/07/07	20	Routine
Details of Emergency Repair	2	30/08/08	48	Emergency
(£ per repair): 700 Click Next to continue.				
actual cost, if known. Otherwise, use the default value provided or leave blank.)	Click on a deta	any Additior ils or to ma	n Row in Tabl ke any chang	e to see es.

Exit Restart Return to Previous Screen Next

_	R	e	s	u	lts	
---	---	---	---	---	-----	--

-Results								
Site name:		graeme		No. of Routine Maintena	ance Additi	ons:	1	
System name:		graeme		No. of Emerg	ency Additi	ons:	1	
Deport for 1.1 Voor Deriod		gg		No. of Catastrophic I	_eak Additi	ons:	0	
Ending:		30/08/2008		Total N	lo. of Additi	ons:	2	
Refrigerant:	R409A	GWP:	1540	Refrigerant Loss: —				
Indicative Cost of Replacement Refrigerant:	Indicative Cost of £ 23 per kg Replacement Refrigerant:			Total Refrigerant Lost 68 kg		68 kg		
Estimated Costs			_ Emissio	ns				
Cost of Replacement Refrig (for 1.1 Year Pe	erant riod): £1	1,564		virect CO ₂ Emissions for .ast 2 Years (per annum):	In Last Yo 67 tonn	ear: Ies	Previous Year: Not Available	
Estimated Cost of Re (for 1.1 Year Pe	Estimated Cost of Repairs (for 1.1 Year Period): £ 950			Total Direct CO ₂ Emissions (for 1.1 Year Period):		104 tonnes		
(for 1.1 Year Pe	riod):	£O	P	rojected CO ₂ Emissions Over Next 10 Years:	(951 to	innes	
Total Cost of Refrigerant (for 1.1 Year Pe	fotal Cost of Refrigerant Loss (for 1.1 Year Period):			Total direct CO ₂ emissions due to refrigerant losses for a 1.1 year period are equivalent to those for travelling				
Projected Cost of Refrige Loss Over Next 10 Y	erant £ 2 ears:	2,854	418,880	miles in a van.				

Return to Exit Restart Print File Save Previous Screen

What are the benefits?

- Can provide end users with feedback related to :
 - the carbon footprint of refrigerant leakage
 - the financial cost of refrigerant leakage
- Can illustrate the potential to achieve significant CO₂ and costs savings, by reducing refrigerant losses.
- Could help to reduce CO₂ emissions related to refrigerant leak on national level.

Training and Specialist skills

4 modules:

- Environmental, cost and legal aspects of refrigerant leakage
- Reducing leakage site specific surveys and advice
- Reducing leakage through appropriate maintenance and service
- Minimising leakage in new systems

realzero

Refrigerants emissions and leakage zero Minimising leakage and carbon emissions

home

about real zero

guidance notes

calculators and tools

free events

fags

training

advice

fgas support

websites

contact us

See your free Real Zero Toolkit

Welcome to REALZero

We are working across all sectors of business and industry, to help achieve significant reductions in carbon emissions due to refrigerant leakage from installed systems. This Institute of Refrigeration led initiative is building a clearer understanding of where and why

Have your say

recent comments:

17/03/09

Although I could be convinced, I am not sure I entirely agree with MBREWER. I have long advocated the need for the detection and repair of leaks. Not because of "environmental concerns", but because of reliability and cost both in down time and "repair" of a clients equipment. I used to get told off for trying to find small leaks from my then service manager: "Gas is a good earn!" I should point out here that back then we were predominately using R12 and

News feed

Calibrated leak check devices How can you check that your leak detector is working?

Feedback from launch meetings Find out what the big issues and challenges were

Pocket Guides now available in print You can now order extra copies!

- I. To understand the generic influence of refrigerant charge on system performance
- 2. Include indirect emissions estimation subroutines.

Conclusions

- Leakage costs!
- Site surveys identified large leakage and good practice
- Tools and specialist skills are available
- www.realzero.org.uk

Questions

Acknowledgements, the Carbon Trust, The IoR, M&S, BOC, HRP, Tesco, Cool Concerns, Star Technical Solutions

