Christian James

Food Refrigeration & Process Engineering Research Centre, GIFHE

The top 10 refrigeration energy using processes in the cold chain Where is the greatest potential for energy saving?

Mapping of energy use

Objective

 Identify and rank 10 'operations' (process / food combinations) in order of their potential to reduce energy usage in food refrigeration by the use of improved technology and enhanced business practice

Mapping

- Aim to quantify where energy is used in cold chain
- At start not well documented and conflicting sources
- Initial indication that ~50% used in retail
- Lack of data on catering use and often not considered

Mapping – Initial estimate

<image>

- Retail
- Transport
- Primary & Secondary chilling & Freezing
- Chilled and frozen storage

Energy mapping - refrigeration

	Chilling	Freezing	Thawing Tempering	Secondary cooling	Chilled Storage	Frozen Storage	Transport	Retail	Catering
Energy used									
Throughput									
Energy change in food									
Efficiency									
Energy that could be saved									

Problem

- Little measured data on energy consumed in a food refrigeration process
- Common sources for much 'quoted' data and source usually an 'educated' estimate
- In the few cases where data had been measured there was no data on food i.e. throughput and temperatures

Energy mapping – top ten ranking

1	Retail display
2	Catering – kitchen refrigeration
3	Refrigerated transport
4	Cold stores
5	Blast chilling – ready meals, pies, etc
6	Blast freezing – potato products, etc
7	Dairy processing – milk/cheese
8	Milk cooling – raw milk on farm
9	Potato storage – bulk raw potatoes
10	Primary chilling – meat carcasses

1 - Retail display

- 5,800 to 12,700 GWh/year
- Data sources
 - Market Transformation Programme
 - FRPERC test data
- Estimate of cabinets in use agreement
- Average energy consumption variable

2 - Catering – kitchen refrigeration

- 4,000 GWh/year
- Data sources

FRPERC Food Refrigeration and Process Engineering

GRIMSBY INSTITUTE

ONDON

University of Sunderland

University of BRISTOL

- Market Transformation Programme
- FRPERC test data
- Commercial service cabinets
- Walk-in cold rooms

3 - Transport

- 4,820 GWh/year
- Data sources
 - Cold Storage & Distribution Federation
 - Brunel University Savvas Tassou
- 52,000 refrigerated vehicles in use
- Average 26 litres/day for refrigeration

4 - Cold stores

- 900 GWh/y
- Data sources
 - Cold Storage & Distribution Federation
 - Carbon Trust
- Based on 2004 benchmarking exercise
- 200 primary cold store sites
- 9.65 million cubic metres capacity
- New study updating data

5 - Blast chilling

- 310 to 610 GWh/year
- Data sources

- Market survey data 1.2m tonnes
- Food & Drink Federation data
- Cooling of (hot) products most energy
 - Ready meals
 - Pies
 - Pizzas etc
- Lack of process benchmarking data

6 - Blast freezing

- 220 to 420 GWh/year
- Data sources

FRPERC

University of BRISTOL

University of Sunderland

Brune UNIVERSIT

- Market survey data 3.2 m tonnes
- British Frozen Food Federation

Blast freezing of products

- Processed potato 1 m tonnes
- Ice cream
- Vegetables
- Benchmark data 70 to 133 kWh/tonne

7 - Milk cooling - raw milk on farm

- 100 to 320 GWh/year
- Data sources

FRPERC Food Refrigeration and Process Engineering

GRIMSBY INSTITUTI

University of Sunderland

University of BRISTOI

• Dairy UK

- Milk Dev Council / Farm Energy Centre
- US energy efficiency study
- 14.6 m tonnes raw milk cooled 37 to 4°C
- 6.8 to 21.6 kWh/tonne measured

8 - Dairy processing - milk/cheese

- 250 GWh/year
- Data sources
 - Dairy UK
 - Milk Development Council
- Dairy processing
 - Milk pasteurisation/cooling 6.9 m tonnes
 - Cheese production 0.39 m tonnes
- Milk published benchmark 20 kWh/tonne

9 - Potato storage - bulk raw

- 140 to 190 GWh/year
- Data sources
 - British Potato Council
 - UK study Devres & Bishop
- 71.8 to 93.4 kWh/tonne cooling/storage
- 6 m tonnes/y estimated 2 m refrigerated

10 - Primary chilling - meat carcasses

- 110 to 140 GWh/year
- Data sources

FRPERC Food Refrigeration and Process Engineering

University of BRISTOL

University of Sunderland

une

- Production data / Defra, FAO
- FRPERC measured data
- 3.39 m tonnes meat production
- Measured mean of 34 kWh/tonne beef
- Measured mean of 42.5 kWh/tonne pork

Energy mapping – top ten ranking

			Saving		
		GWh/y	%	GWh/y	
1	Retail display	5800 - 12700	30-50	6300	
2	Catering – kitchen refrigeration	4000	30-50	2000	
3	Transport	4820	20-25	1200	
4	Cold storage - generic	900	20-40	360	
5	Blast chilling – (hot) ready meals, pies	310 - 610	20-30	180	
6	Blast freezing – (hot) potato products	220 - 420	20-30	130	
7	Milk cooling – raw milk on farm	100 - 320	20-30	100	
8	Dairy processing – milk/cheese	250	20-30	80	
9	Potato storage – bulk raw potatoes	140 - 190	~30	60	
10	Primary chilling – meat carcasses	110 - 140	20-30	40	

Thank you for listening

More information at: http://www.grimsby.ac.uk/What-We-Offer/ DEFRA-Energy/

frperc@grimsby.ac.uk

Food Refrigeration and Process Engineering Research Centre (FRPERC)

Grimsby Institute of Further & Higher Education

HIS Building, Origin Way, Europarc, Grimsby, N. E. Lincolnshire

DN37 9TZ