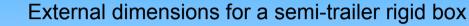

Prof. Savvas Tassou School of Engineering and Design, Brunel University


Transport Refrigeration Some facts and figures

- 650,000 refrigerated road vehicles in the EU
- European road freight 1800 mio t.km 3rd is refrigerated, around 600 mio t.km
- UK responsible for 8% of EU refrigerated road traffic, 48 mio t.km [CRT]

Transport Refrigeration Legislation and temperature control


Transport of food products across borders in EU (except fruit and vegetables) covered by ATP agreement. Agreement also covers equipment.

Bodies:

- Normally insulated (IN) k= 0.7 W/m²K
- Heavily insulated (IR) k= 0.4 W/m²K
- Temperature control -20 °C; -10 °C; 0 °C; +12 °C
- Most common certification is for all temperature classes (FRC – mechanically refrigerated and Heavy insulation).

Transport Refrigeration Legislation and temperature control

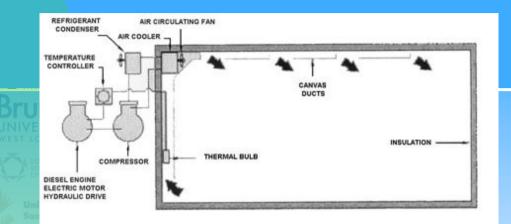
- 13.56 m length (fixed); 2.6 m width (fixed); 2.75 height
- Internal dimensions:
 - 13.35 m length; 2.46 m width; 2.5 m height.
- Width is designed to accommodate 2 europallets side by side (size of pallet 1.0 m deep; 1.2 m wide)
- Insulation material deteriorates with time by 3% to 5% per year.
 Significant impact on energy consumption.
- Capacity of refrigeration system for new equipment (1.35 x heat transfer through the body and 1.75 x heat transfer if unit tested outside vehicle)
- ATP certificate valid for 6 years
- 1500 certificates in UK per year

Refrigeration Units

independent diesel engine with direct drive to compressor and fans – **chosen by majority of trailer transporters**

- independent diesel engine driving generator to electrically power compressor and fans – **majority of truck transporters**
- Vehicle diesel engine driving generator / alternator to electrically power compressor and fans – small truck and van transporters
- Cryogenic refrigerant held under pressure and released as required (CO2 or Nitrogen for example)
- Eutectic systems charged at bay/RDC
- Hybrid systems

University of

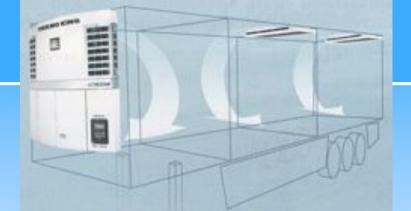

Sunderland

Refrigeration Units

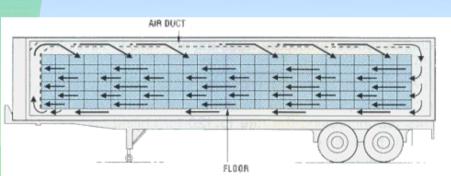
Approximate Drive Ranges (-20°C/+30°C)

		Body Volume (m ³)	Refrigeration Duty (W)	Equipment Weight (kg)
	Vehicle Alternator Unit	<3	<400	<80
	Direct Drive Unit	5 - 30	250 - 2,500	50 - 150
	Auxiliary Alternator Unit	30 - 90+	2,000 - 14,000	100 - 500
	Auxiliary Diesel Unit	30 - 90+	2,500 - 10,000	350 - 900*
d	Contract Con		LONDON SOUTH BANK UNIVERSITY	University of Sunderland

Air Delivery Systems



Refrigeration system arrangement

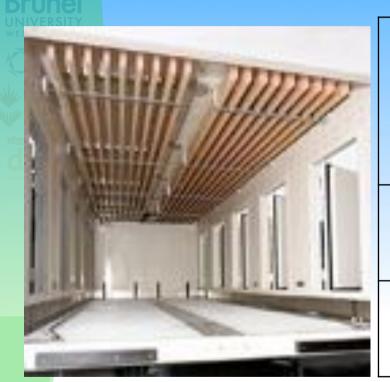

University of BRISTOL

Food Refrigeration & Process Engineering Research Centre Brunel

UNIVERSITY WEST LONDON

Multi-compartment system

defro


Department for Environment Food and Rural Affairs

Other commercial systems

Eutectics

Sizing table

Box internal Volume	Drops per hour	Approximate Holdover Capacity (@-33°C)	Approxi mate Mass
4m ³	4 drops/ hr	6 kWh	80 to 100kg
20m ³	4 drops/ hr	25 kWh	450 to 500kg

Cryogenic (total loss systems)

Liquefied carbon dioxide (CO_2) in an open system (Thermoking).

- Liquid CO2 evaporates to provide cooling & is then vented to atmosphere
- Heat mode extension of engine coolant system
- System powered by vehicle battery (12 or 24V) when ignition on.
- Electric standby (option)

Characteristics of CO2 cryogenic systems

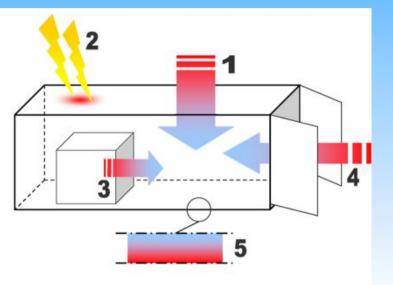
- It is feasible to use cryogenic liquid carbon dioxide for food transport refrigeration for both rigid vehicles and articulated lorries.
- Operating costs of the conventional and CO₂ systems will largely depend on the relative cost of diesel fuel and liquid CO₂.
- The cost of CO₂ and the infrastructure required will reduce as the number of vehicles using cryogenic systems increases.

Advantages of CO2 cryogenic systems

Silent operation

- Lower maintenance compared to vapour compression systems
- Rapid load pulldown and vey good temperature control
- Potentially zero GHG emissions if CO₂ is recovered from industrial processes (fertiliser manufacture)

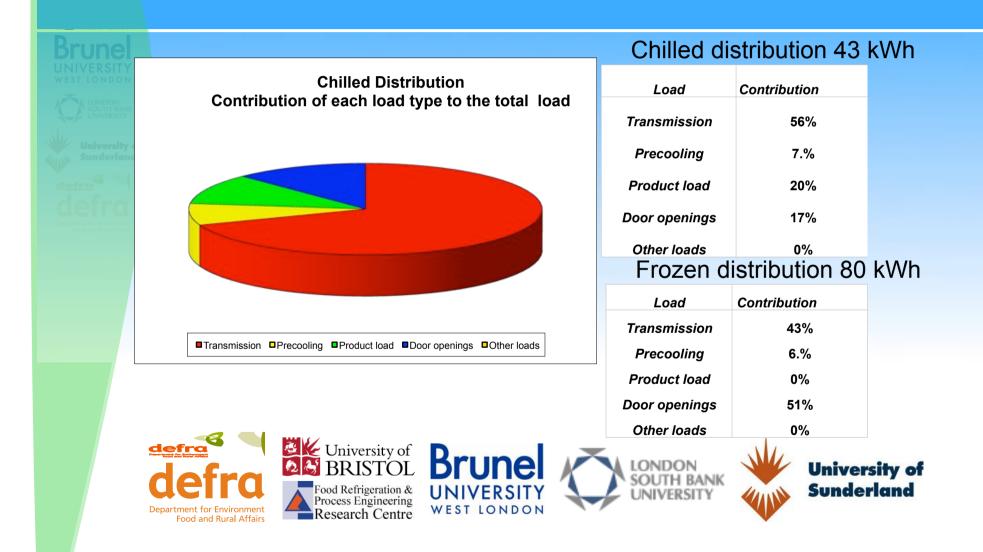
Thermal Load

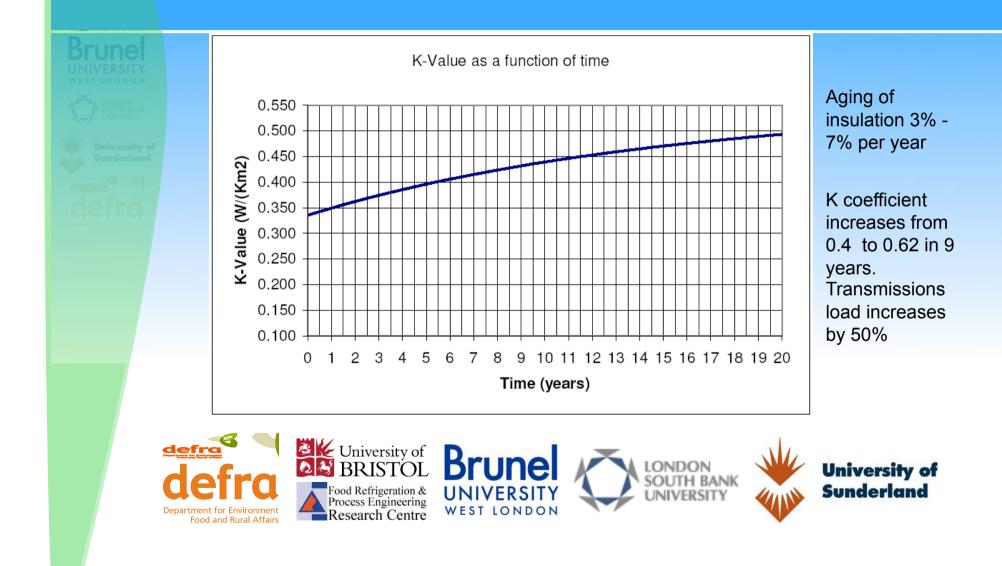

Transmission load.

2. Solar radiation load. In the analysis the solar radiation load - this can be integrated with the transmission load using an external temperature adjustment.

3. Product load.

1


- Infiltration air load (door openings). 4.
- Pre-cooling vehicle load. 5.



University of Sunderland

Examples of Thermal Loads

Insulation

Refrigeration duties and fuel consumption

UNIVERSITY WEST LONDON SOUTH BANK UNIVERSITY University Sunderland

Body Inside Length/Inside Volume/Type	Required refrigeration capacity, multi drop distribution (W)		Fuel consumption (litre/hr)	
	-20 °C		-20 °C	
	k=0.4	k=0.7	k=0.4	k=0.7
	$W/m^2 K$	$W/m^2 K$	$W/m^2 K$	$W/m^2 K$
6.2 m/ 33.42 m ³ / Rigid	5630	4554	2.0	1.5
Lorry				
10.4 m/ 61.15 m ³ /	9897	7920	3.0	2.5
Rigid Lorry				
13.4 m/78.79 m ³ / Semi	13500	10078	4.0	3.0
Trailer				

Refrigeration duties and fuel consumption

Vehicle class	Distanc	e traveled	Fuel	Fuel	Overall	Percent
	and fuel		efficiency	consumption	vehicle fuel	refrigeration
	consu	Imption	(motive)	of	efficiency	energy to
	(ma	otive)		refrigeration	(motive plus	motive
				engine	refrigeration)	energy
	km/day	Litres/day	km/litre	Litres/day	km/litre	%
Medium rigid	409	111.3	3.7	21.0	3.09	18.9
Large rigid	286	90.71	3.15	17.7	2.63	19.5
City artic	335	112.33	2.98	26.1	2.42	23.2
32 tonne artic	419	140.8	2.97	34.1	2.40	24.2
38 tonne artic	486	159.62	3.04	24.9	2.52	15.6

Insulated Box

- Select an insulated box with low K-value (minimise heat gain)
 - The use of vacuum insulation can reduce K value by 50% and can result in 30% energy savings (payback period of around 6 years)
- Select an insulated box of the correct dimensions for the application to minimise surface area (minimise heat gain)
- Select a light-coloured ideally white body colour (minimise heat gain)
- Have box cleaned frequently and check for damaged insulation (thermal imaging)

Refrigeration unit

select the right refrigeration unit for the application (over or under-specified equipment can result in fuel wastage)

- reliability
- installed cost
- operational cost
- global warming potential
- weight
- engine emissions

Operational considerations

- load the vehicle avoiding blockage of air passages & use maximum load - height lines to guide operators (maximise air circulation, minimise resistance)
- load goods fully pre-cooled to required set-point or below it (minimise heat load on unit)
- use a temperature controlled sealed loading dock (minimise heat gain)
- minimise frequency and duration of door openings
- use door curtains (up to 40% savings in frozen food multi-drop operation

- use door switches to automatically turn unit off when doors are open
- select the appropriate refrigeration unit set-point for the food transported, not a lower one (avoid unnecessary unit operation)
- select the appropriate unit operating mode : stop/start for frozen, modulation for fresh (optimum unit efficiency)
- park vehicle out of direct sunlight where possible
- maximise vehicle utilisation avoid partial loads
- thorough driver training & established Standard Operating Procedures

