Refrigerated Display Cabinets

Progress made and research and development issues

Brunel University

Professor Savvas Tassou

www.brunel.ac.uk/about/acad/sed

Brief History

- 1. Work started as a collaboration between Safeway Stores PLC and Brunel University back in 1994. CASE Studentship funded by EPSRC and Safeway– David Stribling
- 2. Followed by a PhD by Dr Weizhong Xiang
- 3. A recent PhD by Dr Abas Hadawey
- 4. A current PhD project by Ahmad Al-Sahhaf
- 5. Other investigations funded by DEFRA and EPSRC (Drs Deborah Datta, Richard Watkins and Issa Chaer).

Test facilities and Modelling Tools

- Environmental test chamber to be able to test at EN441 conditions.
- Replication of refrigeration pack and typical supermarket control system in the laboratory for research on modelling and control
- CFD simulation one of the 1st applications of CFD to display cabinet modelling

Deflection modulus = $0.14 \sim 0.18$

Deflection modulus = $0.14 \sim 0.18$

H = Opening height $b_o = \text{Air curtain slot width}$ $u_o = \text{air curtain initial velocity}$ $\rho_c = \text{density of cold air in cabinet}$ $\rho_w = \text{density of space air}$ $\rho_o = \text{density of air at air curtain}$ discharge

$$D_{m} = \frac{(\rho_{0}b_{0}u_{0}^{2})}{gH^{2}(\rho_{c} - \rho_{w})}$$

Minimum initial air curtain velocities for non-isothermal air curtains. Slot width = 60 mm

Height of opening (m)	Minimum velocity (m/s)	Minimum air flow rate (m ³ /s/m)	
0.25	0.4	0.023	
0.40	0.64	0.038	
0.60	0.96	0.057	
0.80	1.11	0.089	
1.00	1.60	0.096	
1.20	1.92	0.115	
1.38	2.24	0.134	

www.brunel.ac.uk/about/acad/sed

$$u_o^2 = \frac{0.18 \cdot g \cdot H^2 \left(\frac{T_o}{T_c} - \frac{T_o}{T_w}\right)}{b_o}$$

- Experiments and simulation have shown that for multi-deck cabinets *H* should be the maximum distance between shelves in the cabinet
- Increasing the slot width should reduce the velocity required to provide good sealing
- A loaded cabinet will require a lower air curtain velocity to provide good sealing
- Back panel flow to the shelves will aid the air curtain particularly when the cabinet is not fully loaded.

- Back panel flow to the shelves can help maintain lower product temperature
- High back panel flow reduces the flow requirement from the air curtain
- Increasing the air curtain flow increases the refrigeration load.

WEST LONDON

Multi-deck cabinet design issues Air curtain position

• Position of air curtain discharge in relation to edge of shelve can influence performance.

Multi-deck cabinet design issues Air curtain position

- Best performance achieved when $b_1 =$ slightly above 0 mm
- Increasing b₁ increases average product temperature and cooling load

Multi-deck cabinet design issues Honeycomb and air curtain discharge angle

- Reducing turbulence at discharge air grille reduces mixing and ambient air entrainment
- Use of honeycomb will reduce turbulence and can modify discharge velocity distribution.
- Use of honeycomb can slightly reduce air entrainment and cooling load.
- A small positive air curtain discharge angle (5°-10°) can reduce slightly the cooling load
 Brune UNIVERSITY WEST LONDON

School of Engineering and Design

Multi-deck cabinet design issues Pressure drop and flow distribution

- Pressure drop in flow tunnel (rear and top) discharge grille and perforations in the back panel will influence flow distribution and the performance of the cabinet
- Back panel flow to each shelf can be controlled by back panel perforation rate.

n	Position	Air curtain	Top shelf	Second shelf	Third shelf	Fourth shelf	Bottom shelf
	Flow distribution (%)	30.0	13.0	12.0	12.0	14.0	16.0

Multi-deck cabinet design issues Flow to bottom shelf

Brunel UNIVERSITY WEST LONDON

School of Engineering and Design

Multi-deck cabinet design issues Flow to bottom shelf

 Uniform flow distribution in back flow tunnel can be controlled through honeycomb or appropriate flow resistance at inlet to rear flow tunnel

Energy Saving Potential

Contributions to load of open vertical multi-deck cabinets

Environmental impact

•Materials, energy

- Open chilled display cabinet
- Display volume = 500 litres

Environmental impact - Inventory

Environmental impact – Life cycle

•8 years, 24 hours a day

Environmental impact – Materials

Complete Chiller

Environmental impact – Materials

www.brunel.ac.uk/about/acad/sed

Reducing impact – Materials

- Copper and Nickel have similar contributions
- Nickel (in stainless steel) can be avoided by using 430 stainless steel instead of 304
- Reduces the chiller's environmental impact from materials by 30%.

Reducing impact – Components & Fabrication

At End of life, cabinets are shredded into 2cm size pieces

 What is needed is clean separation

Reducing impact – Components & Fabrication

GOOD DESIGN FEATURES:

- Minimize number of materials
- Low use of plastics
- Use of wood with low embodied energy
- Flat sheet insulation with minimum bonding
- Key-hole drop-on fixings or screws, rather than rivets or spot-welding
- Electrical distribution & components concentrated in one accessible compartment

Simulation of supermarket zone - aisle

No heating system in zone

Temperature coded velocity vectors (K) on two

horizontal planes (without HVAC system)

No heating system in zone

Variation of temperature and moisture content along the aisle centre line (without HVAC system)

www.brunel.ac.uk/about/acad/sed

Under floor heating system

Temperature contours (K) on a horizontal plane 0.3 m above floor level

Temperature contours (K) at different sections (floor heating system)

Heating power Cooling		Product temperature (°C)			Minimum	
(W/m^2)	(kW/m)	Top shelf	3 rd shelf	Bottom shelf	zone (°C)	
0 (No HVAC)	0.91	3.1	2.1	3.8	7.5	
150	0.93	3.7	2.5	4.7	9.0	
200	0.96	3.9	2.6	4.9	9.5 Br	une
					UNI	VERSIT

WEST LONDON

Top extract and bottom supply

Temperature contours (K) on a plane 0.3 m above floor level (top suction and bottom supply system)

Bottom supply	Cooling	Product temperature (°C)			Minimum tomporature in	
temperature (°C)	(kW/m)	Top shelf	3 rd shelf	Bottom shelf	zone (°C)	
No heating system	0.91	3.1	2.1	3.8	7.5	
21	0.82	3.3	2.2	4.2	10	
25	0.84	3.5	2.4	4.4	11	
	·		·		Brune	
					UNIVERSI	

2.84E+02

WEST LONDON

Bottom extract system – no heating in aisle

Temperature contours (K) at different sections (bottom extract system Temperature contours (K) on a horizontal plane 0.3 m above floor level (bottom extract system)

Bottom extract and top supply system

Temperature contours (K) at different sections (bottom extract and top supply system) Temperature contours (K) on a horizontal plane 0.3 m above floor level (bottom extract and top supply system)

Bottom extract and top supply system

Temperature coded velocity vectors (K) at Section D (bottom extract and top supply system)

Moisture content (kg/kg) at Sections A, B, C, and D (bottom extract and top supply system)

Comparison of different systems

Latent and total cooling load for different systems

Zone type	Latent cooling load (kW/m)	Total cooling load (kW/m)	
No HVAC	0.28	0.91	
Top extract and bottom supply	0.24	0.82	
Bottom extract and top supply	0.16	0.84	

Comparison between bottom extract system, bottom extract and top supply systems and no HVAC system

Zone type	Temperature Top shelf (°C)	Temperature 3rd shelf (°C)	Temperature Bottom shelf (°C)	Zone minimum air temperature (°C)
Bottom extract	3.6	2.4	4.7	13
Bottom extract and top supply	3.7	2.4	4.7	17
No HVAC system	3.1	2.1	3.8	7.5

Summary

- Progress has been made but further work needs to be done to gain an in-depth understanding of the factors influencing the performance of air curtains in display cabinets.
- Becoming more important with the use of higher opening heights.
- Evaluation of performance of ECM fans and LED lighting in field trials.
- Control integration and system optimisation in real time.
- Compact and efficient evaporator/cooling coil designs to minimise material use and frosting/defrosting losses.
- Impact of merchandising approaches on cabinet design, sales and energy use

